Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux.
نویسندگان
چکیده
Maintenance of corneal hydration is dependent on the active transport properties of the corneal endothelium. We tested the hypothesis that lactic acid efflux, facilitated by buffering, is a component of the endothelial fluid pump. Rabbit corneas were perfused with bicarbonate-rich (BR) or bicarbonate-free (BF) Ringer of varying buffering power, while corneal thickness was measured. Perfusate was collected and analyzed for lactate efflux. In BF with no added HEPES, the maximal corneal swelling rate was 30.0 ± 4.1 μm/h compared with 5.2 ± 0.9 μm/h in BR. Corneal swelling decreased directly with [HEPES], such that with 60 mM HEPES corneas swelled at 7.5 ± 1.6 μm/h. Perfusate [lactate] increased directly with [HEPES]. Similarly, reducing the [HCO3 (-)] increased corneal swelling and decreased lactate efflux. Corneal swelling was inversely related to Ringer buffering power (β), whereas lactate efflux was directly related to β. Ouabain (100 μM) produced maximal swelling and reduction in lactate efflux, whereas carbonic anhydrase inhibition and an monocarboxylic acid transporter 1 inhibitor produced intermediate swelling and decreases in lactate efflux. Conversely, 10 μM adenosine reduced the swelling rate to 4.2 ± 0.8 μm/h and increased lactate efflux by 25%. We found a strong inverse relation between corneal swelling and lactate efflux (r = 0.98, P < 0.0001). Introducing lactate in the Ringer transiently increased corneal thickness, reaching a steady state (0 ± 0.6 μm/h) within 90 min. We conclude that corneal endothelial function does not have an absolute requirement for bicarbonate; rather it requires a perfusing solution with high buffering power. This facilitates lactic acid efflux, which is directly linked to water efflux, indicating that lactate flux is a component of the corneal endothelial pump.
منابع مشابه
Bicarbonate, NBCe1, NHE, and carbonic anhydrase activity enhance lactate-H+ transport in bovine corneal endothelium.
PURPOSE To identify and localize the monocarboxylate transporters (MCTs) expressed in bovine corneal endothelial cells (BCEC) and to test the hypothesis that buffering contributed by HCO(3)(-), sodium bicarbonate cotransporter (NBCe1), sodium hydrogen exchanger (NHE), and carbonic anhydrase (CA) activity facilitates lactate flux. METHODS MCT1-4 expression was screened by RT-PCR, Western blot ...
متن کاملThe Bull’s Eye: Are We Off-Target for Corneal Endothelial Cell Physiology?
As the primary refractive surface of the eye, clarity of the cornea is essential for optimal visual acuity. Many disease processes can irreversibly disrupt corneal clarity requiring corneal transplantation to restore visual function. The most common indication for corneal transplantation is opacification from corneal edema. Corneal edema arises from dysregulation of fluid homeostasis in the cor...
متن کامل0925 - Characterisation of Lactic Acid Transport in Bovine Articular Chondrocytes
INTRODUCTION The avascular environment of the articular chondrocyte dictates that metabolism is largely by anaerobic pathways, with the consequent production of large quantities of lactic acid. The lactic acid produced by chondrocytes must diffuse from the cells, through the extracellular matrix to the synovial fluid and thereafter to capillaries and the systemic circulation. There are reports ...
متن کاملNeotrofin is transported out of brain by a saturable mechanism: possible involvement of multidrug resistance and monocarboxylic acid transporters.
Neotrofin (AIT-082; leteprinim potassium) is transported out of brain by a saturable mechanism and in this study the mechanisms mediating this efflux were evaluated. Intracerebroventricular coadministration of [(14)C]Neotrofin with verapamil, a P-glycoprotein inhibitor, probenecid, an organic anion transporter inhibitor, 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsul...
متن کاملProbenecid-inhibitable efflux transport of valproic acid in the brain parenchymal cells of rabbits: a microdialysis study.
Delivery of valproic acid (VPA) to the human brain is relatively inefficient as reflected by a low brain-to-unbound plasma concentration ratio (< or =0.5) at steady state. Previous pharmacokinetic studies suggested that the unfavorable brain-to-plasma gradient is maintained by coupled efflux transport processes at both the brain parenchymal cells and blood-brain barrier (BBB); one or both of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 311 1 شماره
صفحات -
تاریخ انتشار 2016